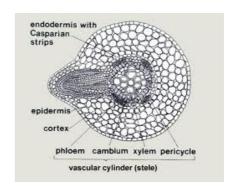
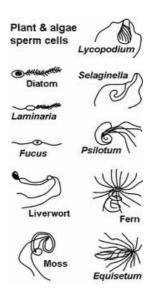

Biology 2201


vascular tissue

- Does the plant have vascular tissue?
- Plants with no vascular tissue get nutrition/water from diffusion
- Vascular tissue: tissue that transports materials in plants (made up of xylem and phloem)

Plants that have this tissue will have true roots and

stems



Dependency on water

All life depends on water to survive

• But not all plants depend on water for reproduction

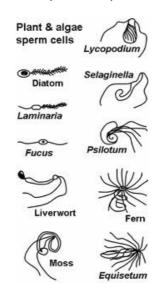
(movement of sperm)

Dominant generation

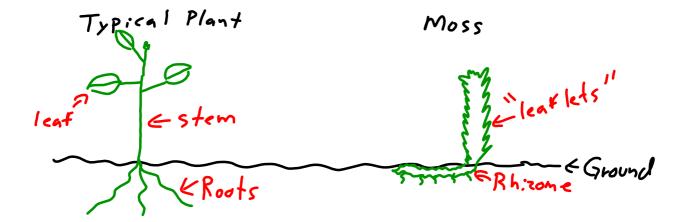
- Does it spend **most** of its life as a gametophyte or Sporophyte?
- Gametophyte generation Makes the gametes (egg or sperm). Haploid (half DNA)
- Sporophyte generation Makes spores (or sometimes seeds). Diploid (full DNA)

Details of reproduction

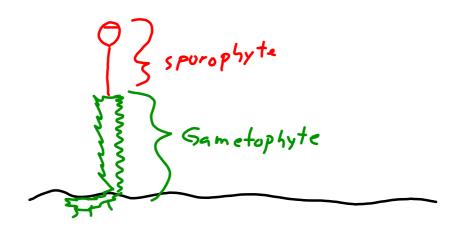

Protection of the egg
Is the seed bare or is it protected in a cone or fruit?



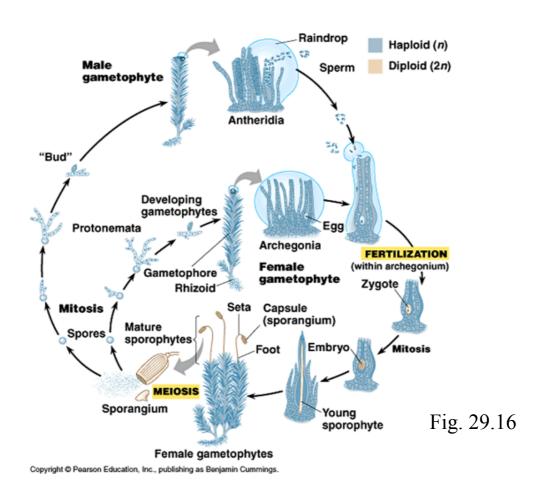
How the sperm reaches the egg
Does it use water, wind, or insects for transport?



Division Bryophyta p.169-171


- This group includes moss.
- All bryophytes are small, usually less than 10cm.
- They have no true roots, leaves, nor stems.

- They have no vascular (transport) tissue.
- They rely on diffusion to transport water and dissolved nutrients.
- Water cannot travel far vertically by diffusion alone, therefore these organisms do not grow tall.


Division Bryophyta

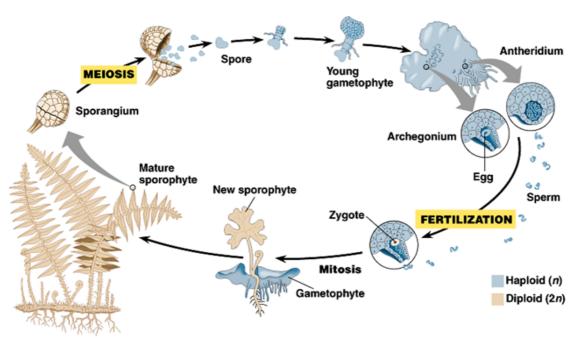
- There are no specialized structures to support the plant, and this also limits their size.
- Bryophytes rely heavily on **water**, especially for reproduction.
- The dominant (largest) generation is the **gametophyte**, which looks "leafy" and green.
- The sporophyte is small and grows directly out of the gametophyte.

Division Bryophyta

- Bryophyte sperm **require water** in order to travel to the egg.
- **Neither** the egg nor the developing zygote has protection from the environment.
- E.g. Sphagnum

8

Division Pterophyta p.171-173


- Seedless Vascular Plants
- This group includes ferns.
- This is the second largest plant division, with 20,000 extant species.
- Ferns range in size from a few cm high to 3m.
- During the time of the dinosaurs, tree ferns reached 25m.
- Ferns have specialized vascular tissue that allows them to transport water much higher than moss.

Division Pterophyta

- Vascular tissue also provides structural support for the plant, allowing it to grow larger.
- Ferns have true stems and leaves and root-like structures called **rhizomes**
- They require water for sperm to swim to the egg for fertilization.
- However, they can live in dryer habitats than the Bryophyta.

Division Pterophyta

- The dominant generation is the sporophyte, which is what we call a "fern."
- The sporophyte is large and grows directly out of the small heart-shaped gametophyte.
- Unlike the bryophytes, fern gametophytes have both sexes present in the same individual.
- Neither the egg nor the developing zygote has protection from the environment.
- Like bryophytes, ferns use spores for dispersal.
- E.g. Maiden hair fern

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Division Coniferophyta p.172-174

- This division is called gymnosperm (naked seed) because the seeds are naked no fruit
- This group includes all cone-bearing plants, including "Christmas trees."
- There are about 650 extant species.
- They range in size from about 10cm to 100m (Redwood).
- This group contains the oldest known organisms, 4000 year old bristle-cone pines.
- Conifers have <u>vascular tissue</u> that can transport water great distances and helps to support the organism.

Division Coniferophyta

- They have true stems, leaves and roots.
- Like all plants, conifers need water to survive, but it is not needed for reproduction.
- The sporophyte is much larger than the gametophyte, which is only a few cells.
- The male gametophyte is apollen grain produced by a cone.
- The female gametophyte **(egg)** is protected by a larger cone.

Division Coniferophyta

- Pollen grains are small and are blown to the egg by the wind.
- When pollen reaches the egg, it ispollinated
- Fertilizationoccurs only if the egg and a pollen nucleus fuse.
- A seed develops around the developing zygote to protect it.
- Some seeds even protect the embryo from fire.
- After the seed has developed it is dispersed, generally by the wind.
- E.g. fir trees, spruce trees, juniper

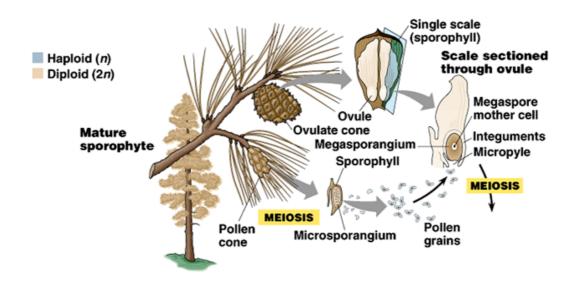


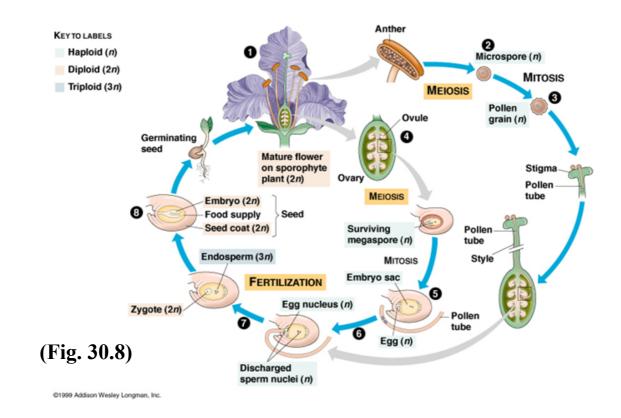
Fig. 30.9

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Angiosperms p.174-179

- This group includes all flowers.
- This is the largest division of plants, with about 250,000 species.
- They range in size from 1mm to 100m high.
- Anthophytes have complex vascular tissue that also aids in support.
- They have true stems, leaves and roots.
- The need for water is very reduced, and some live in very dry habitats (i.e. cactus).

Angiosperms


- Like the Gymnosperms, the sporophyte generation is dominant and the gametophytes are reduced to pollen and eggs.
- Both the pollen and egg are produced in a specialized reproductive organ called **aflower**.
- Flowers may have only male or female parts, or contain both sexes.
- The egg is protected by the flower then seed and sometimes fruit.
- Pollen reaches the egg either by wind (e.g. grass) or by attaching to animals (e.g. dandylion). Does not require water.

Angiosperms

- After pollenization and fertilization, a seed develops that protects the embryo.
- Because the embryo is covered by a seed or fruit it is called "covered."
- The term **angiosperm** is used for this division because it means "covered seed."
- Fruit may help with protection (i.e. a hazel nut) or dispersal (i.e. berries).

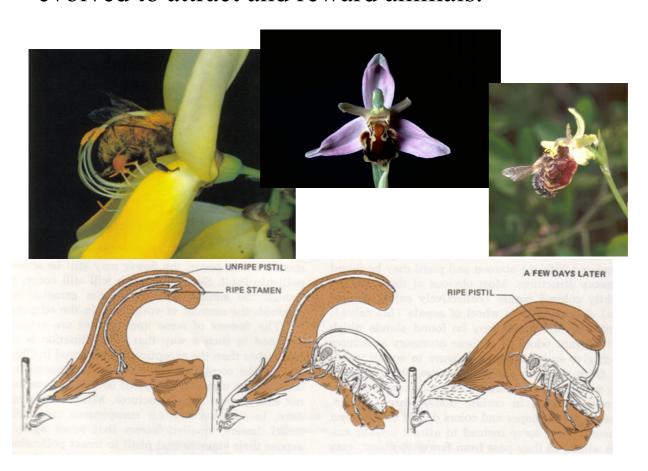
Life Cycle of the Angiosperms

Angiosperms are the most successful Plants p.175-179

- Anthophyta is considered a very successful group because it has so many species.
- If a taxon has many different species, it means there are many habitats that group can live in.
- There are several features of flowers that helped them adapt to many different habitats.

Angiosperms are the most successful Plants

- 1. **Assistance of pollinators** Wind is useful to disperse pollen but not as efficient as animal pollinators.
- Most of the Anthophyta use animals as pollinators.
- Animal pollinators can be used to carry pollen directly from one flower to another.


- This greatly increases the efficiency of pollination and reduces pollen wasted when wind is used.

Angiosperms are the most successful Plants

- 2. **Ability to attract pollinators** Only the Anthophyta actively attract pollinating animals.
- Scent, colour, and nectar (high in sugar) have evolved to attract and reward animals.

Angiosperms are the most successful Plants

3. **Protection of seeds** – Some flowers have modified fruit that form a hard covering which protects the seed (nut).

Angiosperms are the most successful Plants

- 4. **Fruit** Some fruit protect seeds, others are designed to disperse them.
- Fruit that is sweet, high in nutrients or water, will be eaten by animals.
- It takes time for seeds to pass through the digestive tract of animals.

- When the seed finally exits the animal's digestive tract, it is usually far from the parent plant.

Angiosperms are the most successful Plants

5. **Specialized tissues** – The Anthophyta have structures which can help them live in hot, dry, or cold habitats.

E.g. Thick outer of cells to prevent water loss in cacti.

