The Cell Membrane p.52

- All cells have membranes.
- Fluid mosaic model Cell membranes are made up of several different types of molecules, most of which can move within the membrane.
- The cell membrane contains:
- 1. **Phospholipid bilayer** The bulk of the membrane is made of two layers of molecules. They create a non-polar (non-charged) interior and polar (charged) exterior.

The Cell Membrane

2. **Proteins** – These can be used for support of the membrane, attachment of the cell to other cells, or as transport channels for other molecules.

3. **Cholesterol** – Helps keep the phospholipids from sticking together at low temperatures and from moving too far apart at high temperatures.

The Cell Membrane

4. **Glycoproteins** – Proteins with carbohydrates attached. These are used for identification of cells by other cells. E.g. antibodies.

http://www.youtube.com/watch?v=ULR79TiUj80

Cell Transport p.53-64

- Cells need to transport materials into the cell and wastes have to be removed.
- All transport is done through the cell membrane (their surface area).
- Cells therefore need a lot of surface area.
- The greater the volume of the cell the slower materials will move to its center and the slower wastes can be removed.
- Cells therefore need to have a small volume
- These two factors are looked at together in the **surface area/volume ratio**, which needs to be as large as possible.

- The cell membrane is **selectively permeable** (similar to a window with a screen).
- It has several mechanisms to allow only selected small molecules and ions into the cell.

1. Permeability of the lipid bilayer

- Hydrophobic core excludes ions (H⁺ and Na⁺) and polar molecules (glucose).
- Hydrophobic molecules such as hydrocarbons and oxygen pass through with ease.
- H_2O and CO_2 are small enough to squeeze through.

Cell Transport

2. Transport proteins

- These proteins span the lipid bilayer and help specific ions and certain polar molecules to pass through the membrane.
- Movement through these proteins can be active or passive.

Cell Transport

- **3. Active Transport-** Movement across a membrane that goes against the concentration gradient and requires metabolically supplied energy.
- The energy is supplied by ATP (Adenosine triphosphate).
- Water and gases are not actively transported.

- **4. Diffusion (Passive transport)** The transport of particles from an area of higher concentration to lower concentration.
 - Concentration Gradient A difference in the number of molecules (or ions) of a substance between two adjacent regions.

Review

- Cells are small
- SA/V ratio must be high
- Transport of small particles:
- Permeability of the lipid bilayer
- Transport proteins
- Active Transport
- Passive Transport (Diffusion)

http://www.youtube.com/watch?v=LP7xAr2FDFU&feature=related

http://www.youtube.com/watch?v=kfy92hdaAH0

http://www.youtube.com/watch?v=7-QJ-UUX0iY&feature=related

- **5. Osmosis** The flow of *solvent* (usually water) through a semi-permeable membrane.
- **Solution** Mixture consisting of molecules or ions less than 1nm in diameter, suspended in a fluid medium (water in most biological systems).
- **Solute** Dissolved substance in a solution.
- Solvent Dissolving medium in a solution.

- A solution can be in one of these 3 conditions when compared to another solution:
- **1. Hypertonic** Having a greater concentration of solute molecules and a lower concentration of solvent (water) molecules.
- **2. Hypotonic** Having a lower concentration of solute molecules and a higher concentration of solvent (water) molecules.
- **3. Isotonic** Solutions of equal solute concentrations.

Transport of Large Particles

- Small ions, molecules and atoms are transported by diffusion or osmosis.
- Larger compounds are transported by one of these nechanisms:
- **1. Exocytosis** The secretion of macromolecules 'y fusion of vesicles with the cell membrane.

2. **Endocytosis** - The uptake of macromolecules and particles by regions of the cell membrane that surround the substance and pinch off to form a vesicle.

Transport of Large Particles

- There are two types of endocytosis:
- 1. **Phagocytosis** The endocytosis of particulate material. (Solid).

E.g. white blood cells, Amoeba.

2. Pinocytosis - The endocytosis of fluids.

- Endo and exocytosis occur only in eukaryotes because a cytoskeleton is required to organize and perform the movement.

Review

- 1. Exocytosis The secretion of macromolecules by fusion of vesicles with the cell membrane.
- 2. **Endocytosis** The uptake of macromolecules and particles by regions of the cell membrane that surround th substance and pinch off to form a vesicle.
- 1. Phagocytosis The endocytosis of particulate material
- 2. **Pinocytosis** The endocytosis of fluids.

Cycling of Matter

- Organic chemicals—Chemicals that contain a lot of carbon, nitrogen, hydrogen and oxygen.
 Usually they are made by organisms.
- Inorganic chemicals— All others.

The Carbon Cycle p. 70 - 90

- In biological systems, carbon exists in solids, liquids and gases.
- The solids include organic molecules such as glucose.
- The gas is carbon dioxide.
- Two biological reactions cycle carbon between these forms:
- 1. **Photosynthesis** The process where plants use light energy to produce sugar (glucose).
- This process takes carbon from a gas and puts it into a solid.

6(O2+6H20)=> C6H2O+60>

The Carbon Cycle

- 2. **Cellular respiration** The process where plants and animals use glucose to produce energy.
- This process takes carbon from a solid and puts it into a gas.

Some organisms can:

anaerobic respiration: metabolizing without the presence of oxygen.

The Carbon Cycle

- Note how the reactions look like opposites.
- The reactions are actually *complimentary*.
- This means that the reactants of one are the products of the other.
 - i.e. What one makes the other uses.
- Carbon can go from a solid to a gas in other ways. E.g. a fire.
- The process of carbon going from a solid to a gas form and back again is the carbon cycle.

The Carbon Cycle

- Note the "chemical energy" refers to adenosine triphosphate (**ATP**).
- ATP stores energy for only a brief period in a phosphate bond.
- This energy is released to drive chemical reactions (i.e. active transport).

