GRADE 7 SCIENCE UNIT 4: THE EARTH'S CRUST

Rocks and Minerals

MINERAL

inorganic solid.

There are hundreds of different minerals on our planet – many look alike.

PROPERTIES OF MINERALS Color

"What color is the mineral?"

* Alone, color is NOT a

reliable way to identify a mineral.

WHY?

Gold has a golden color. Which mineral is gold?

Gold

Pyrite

PROPERTIES OF MINERALS Lustre

"How shiny is the mineral?" OR

How the light is reflected from the

mineral's surface

TERMS DESCRIBING LUSTRE... **Dull**: does not reflect light

Example: Chalk

TERMS DESCRIBING LUSTRE... Metallic: looks like metal

Example: <u>Silver</u>

TERMS DESCRIBING LUSTRE...

Glassy: Has a surface

reflection like a piece of glass

Example: Calcite

PROPERTIES OF MINERALS Streak

<u>The powdered form of the</u>

mineral.

"What color is left behind when you scratch a porcelain tile?"

Hematite: comes in many colors but has a reddish streak always

PROPERTIES OF MINERALS Hardness

○ "How difficult is it to scratch a mineral?"

The harder mineral will scratch the softer one. *Use Mohs Hardness Scale

How can we use this scale?

Mohs Scale of Hardness Common Objects Mineral Scale Number Talc Gypsum Fingernail Calcite Copper Penny Fluorite Apatite Steel Nail Olass Plate Orthoclase -Quartz Streak Plate Topaz Corundum -Diamond 10

Defende norde 910 in text

Using Moh's Hardness scale

If you scrape topaz and apatite together, which will scratch the other? _____

If you rub talc and gypsum, which will scratch the other?

How would you tell the difference between calcite or quartz using the Moh's Hardness Scale?

PROPERTIES OF MINERALS Cleavage

• The tendency to split along

smooth, flat surfaces called

planes.

PROPERTIES OF MINERALS Cleavage

Example: <u>Mica cleavs along</u>
<u>one plane (in sheets)</u>

Do All Minerals have cleavage?

Do All Minerals have cleavage?

NO!

PROPERTIES OF MINERALS

Fracture

o Breaking with rough or

jagged edges.

PROPERTIES OF MINERALS

Fracture

Example: Quartz does not break along any plane

Other properties scientists may sometimes use:

- a. Crystal structure
- b. Heft how heavy it feels.
- c. Odor
- d. Magnetism
- e. Whether the surface feels powdery, soapy or greasy.

Core Lab Activity 10-1C Pages 322(3)

"A Mineralogist's Mystery"

Classification of Rocks

Discussion Questions

1. How do the crystals or minerals form in a rock?

2. Why do some rocks have layers?

3. Why do some rocks have rounded particles while others have angular particles?

Rocks:

Are ► <u>combinations of two or</u>

more minerals.

Rocks

They can be grouped into three families depending on how they are formed.

- <u>Igneous</u>
- <u>Sedimentary</u>
- <u>Metamorphic</u>

1. Igneous Rocks

Result from the cooling of molten (melted) rock material.

The cooling creates crystals in the rocks.

Basalt and granite are the most common.

2 Types of molten material

Lava: Molten material that is on the surface of the earth

Magma: Molten material that is inside the earth

2 Types of molten material Above the

Below

Ground

the ground

Draw a diagram to show the difference between magma and lava.

2 Types of Igneous Rocks

Intrusive Extrusive

2 Types of Igneous Rocks

Intrusive

▶ formed below the surface of the Earth.

Rocks cool very slowly.

► They have large crystals.

Granite

Gabbro

2 Types of Igneous Rocks

Extrusive

► Formed above the Earth's surface.

Rocks cools quickly.

► They have small crystals.

Rhyolite

Obsidian

Describe the crystal size in each rock type:

lgneous Rock	Where rock forms	Crystal Size	Explain Crystal Size
Extrusive			
Intrusive			

Describe the crystal size in each rock type:

lgneous Rock	Where rock forms	Crystal Size	Explain Crystal Size
Extrusive	On earth	Small	Cools quickly in cold air
Intrusive	In Earth	Large	Cools slow in warm earth

Draw a diagram to show where extrusive and intrusive rock form.

Igneous Rocks - practice!

Name of Rock	Does it contain air bubbles	Are crystals visible (if so state their color)	Size of each type of crystal in rok	Did the rock cool slowly or quickly	Intrusive or extrusive?
Basalt					
Obsidian					
Pumice					
Granite					

© geology.com

2. Sedimentary Rocks:

Form from the compaction and cementation (lithification) of **sediments** into visible layers called beds.

What is sediment formed from:

Come from the weathering and erosion of other rocks

What are the layers of sedimentary rocks called: Beds

Sedimentary rocks are classified by grain size

Shale

	Size of grain	Sediment it is formed from?
	(small, medium	(pebbles, mud & silt, sand,
	or large)	Gravel, plant/animal parts)
Shale	Small	Mud and Silt

Use your browser's "back" button to return to the data page.

	Size of grain	Sediment it is formed from?
	(small, medium	(pebbles, mud & silt, sand,
	or large)	Gravel, plant/animal parts)
Sandstone	Medium	Sand

Sandstone

Conglomerate

	Size of grain	Sediment it is formed from?
	(small, medium	(pebbles, mud & silt, sand,
	or large)	Gravel, plant/animal parts)
Conglomerate	Large	Gravel

	Size of grain (small, medium or large)	Sediment it is formed from? (pebbles, mud & silt, sand, Gravel, plant/animal parts)
Limestone	Small to large	Plant/animal parts

Limestone

3. Metamorphic

Result when pre-existing rocks (parent

rocks) undergo changes due to heat,

pressure and water.

This is a long and slow process.

Metamorphic Rocks

Parent Rock: The original rock that turns into a metamorphic rock

Igneous

PARENT: Granite

Metamorphic

Gneiss

Sedimentary > PARENT: Shale

Sedimentary Metamorphic

Use your browser's "back" button to return to the data page.

PARENT: Shale

Slate

Scratch off Sandstone!

Sedimentary Metamorphic

PARENT: Limestone

Marble

The Rock Cycle

- Rocks continue to change in ongoing processes called the rock cycle.
- The materials found in rocks undergo constant change to produce new rocks under different conditions.
- The matter in these rocks is neither created nor destroyed, it is just recycled.

