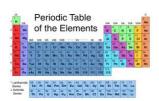
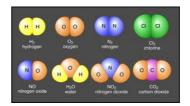
Grade 9 Science!

Unit 2 - Chemistry

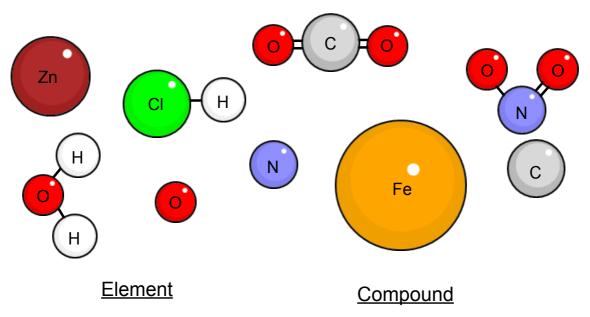

Chapter 3: Elements combine to form compounds

- Element Vs. Compound and Name Vs. Formula
- Metals Vs. Non-metals and Ionic Vs. Covalent
- Element Ratios
- Naming ionic and molecular compounds
- Conclusions
- Worksheet
- Challenge
- Homework


Element Vs. Compound

Element: A pure substance containing only **one** type of atom.

Examples: He (Helium), H (Hydrogen), C (Carbon), O (oxygen)



<u>Compound:</u> A pure substance containing <u>two or more</u> types of atoms.

Examples: H₂O (water), CO₂ (Carbon dioxide), NaCl (Sodium chloride)

Element or Compound?

Chemical Name Vs. Formula

<u>Chemical Name:</u> A Scientific <u>name</u> given to a compound *tells us what it <u>elements</u> it is made up of

Examples: Sodium sulfide, Carbon dioxide

*Sometimes we use trivial (meaningless names): Water, Methane

Carbon dioxide

<u>Chemical Formula:</u> Scientific <u>symbols</u> given to a compound from the periodic table

Examples: H₂O, CO₂, NaS

How can we switch between the Formula and Name?

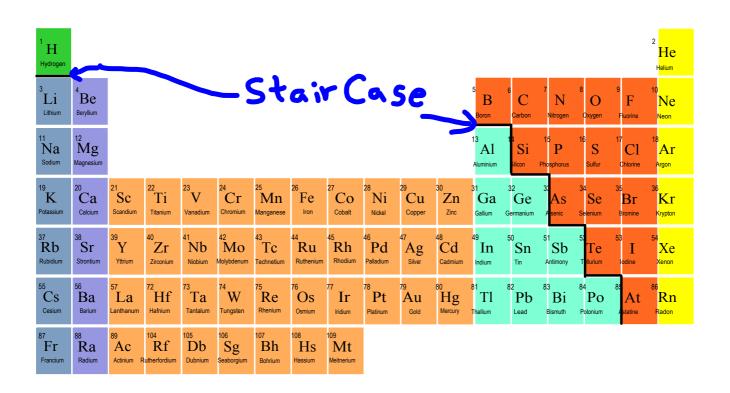
- First we need to know the difference between:

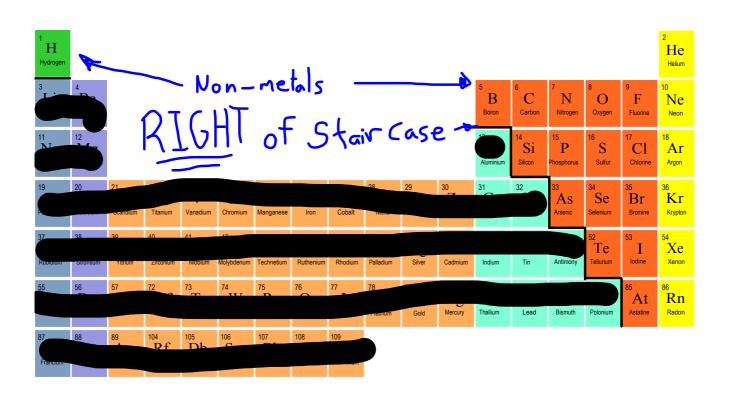
metals and non-metals

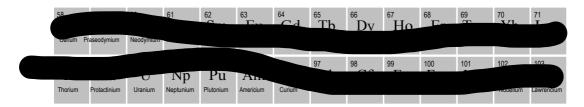
Metal Vs. Non- Metal

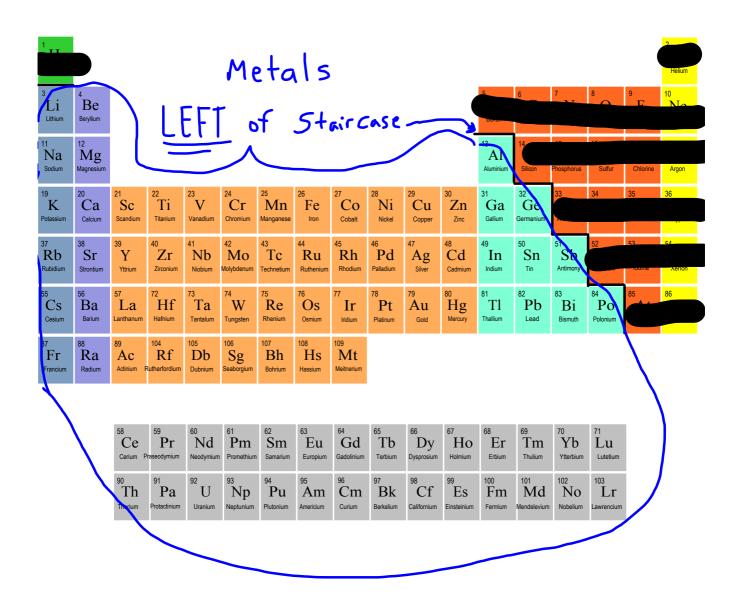
Metal: An element that is a good conductor of heat and electricity Found on the **LEFT** side of the staircase

Examples: Gold, Magnesium, Sodium

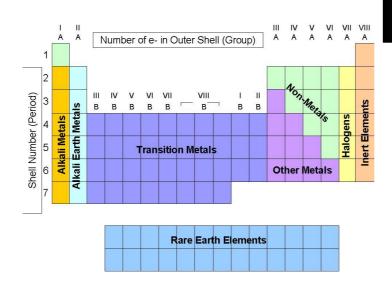





Non-Metal: An element that is a poor conductor of heat and electricity Found on the **RIGHT** side of the staircase


Examples: Carbon, Hydrogen, Chlorine

Cerium F	Praseodymium	$\overset{\text{60}}{N} \overset{\text{M}}{d}$ Neodymium	Promethium	Sm Samarium	Europium	Gadolinium	$\mathop{Tb}\limits_{\text{Terbium}}^{65}$	Dy Dysprosium	Ho Holmium	Erbium	$\mathop{Tm}_{\text{Thulium}}^{69}$	70 Yb Ytterbium	71 Lu Lutetium
90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm	101 Md Mendelevium	No Nobelium	103 Lr Lawrencium



Question

- Is gold a metal or non-metal?
- Is sulfur a metal or non-metal?
- Is calcium a metal or non-metal?

Metals and Non-Metals in compounds

You can have a mixture of metal and non metal elements in your compounds:

• 3 major groups:

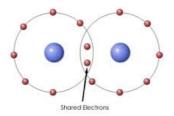
(Not doing) X. Metallic compounds

Metal and metal

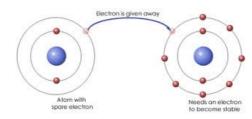
2. Covalent compounds

Non- metal and non-metal

3. Ionic compounds

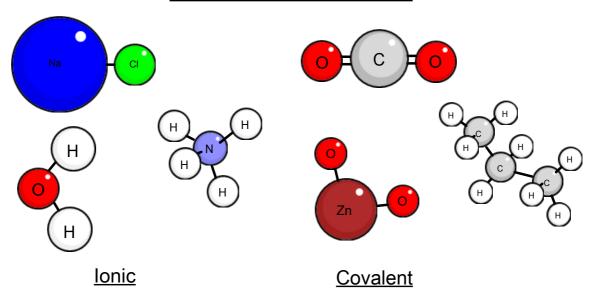

Metal and non-metal

Ionic Vs. Covalent


Covalent bond:

- A non-metal and non-metal compound
- bond between elements = **Sharing** electrons
- Create Molecular compounds (Molecules)

Examples: Water (H₂O), Carbon dioxide (CO₂)

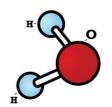


Ionic Bond:

- A metal and a non-metal compound
- bond between elements = **Give or Take** electrons
- Create Ionic compounds

Examples: Sodium chloride (NaCl), Calcium Carbonate (CaCO₃)

Ionic or Covalent?


Ratio of elements

- A compound can have more than 1 of each element in it
 - H₂O Has **2 Hydrogen** and **1 Oxygen** atoms, **3** atoms in all
 - CO₂ Has **1 Carbon** and **2 Oxygen** atoms, **3** in all
 - CaCO₃ Has 1 Calcium, 1 Carbon and 3 Oxygen, 5 in all

* be careful:

*elements can have two letters

Co - Cobalt CO - Carbon and Oxygen

* The prefix only belongs to the element in front of it

CO₂ - 2 oxygen not 2 Carbon

How many atoms?

	#Atoms	#Elements
H ₂ O		
CO_2		
H_2O_2		
CH ₃ COOH		
Fe		

Naming Ionic Compounds

Ionic compound Rules:

- 1. Ionic compounds are made of a metal and non metal
- 2. The **metal's** name goes **first**
- 3. Only the **first** name gets **capitalized**
- 4. The last name always ends in ide

Examples: NaCl: Sodium chloride

netal

CaCl₂: <u>Calcium chloride</u>

netal

Name the following Ionic compounds:

- 1. MgO:
- 2. K₃N:
- 3. BeF₂:
- 4. Li₂S:

Naming Covalent/Molecular Compounds

Covalent compound Rules:

- 1. Covalent compounds are made of 2 non-metals
- 2. Only the first name gets capitalized
- 3. The last name always ends in ide
- 4. If there is more than 1 atom of an element we give prefixes

Examples: SiO: Silicon oxide

CO₂ : <u>C</u>arbon <u>di</u>ox<u>ide</u>

19

Prefixes

• Prefixes are given to Covalent/Molecular compounds:

- 2 atoms : **di**

CO₂: Carbon dioxide

- 3 atoms : tri

F₃P: <u>Tri</u>flourine phosphide

- 4 atoms : tetra

BCl₄: Boron <u>tetra</u>chloride

* No prefix given for just 1 atom

Name the following Covalent compounds:

- 1. SCl₂:
- 2. NO₄:
- 3. PCl₂:
- 4. SO₃:

Conclusions?

- Element Vs. Compound?
- Name Vs. Formula?
- Metals Vs. Non-metals?
- Ionic Vs. Covalent?

Answer the following questions based on the item below:

NO_3

- 1. Element or compound?
- 2. Molecular or covalent?
- 3. How many atoms all together?
- 4. What is it's full name?

Chapter worksheet 1

Name:			%
9	<u> Grade 9 Chapter 3</u>	Worksheet 1	
1. Put each of the (7 marks)	e following under e	ither element or comp	ound:
NaCl	K	Со	
CO	Na	NO	
N	C	Be	
Element Example: K		<u>Compound</u> NaCl	
2. Put each of the (7 marks)	e following under ei	ither metal or non-met	al:
Na	K	θ	
С	Be	N	
P	Al	Н	
<u>Metal</u>		Non-metal	
Example: Na		0	

Name: _				/27=%
3.	How many elements	and atoms are in	the following? (3 Mar	ks)
	Number o	of elements	Total Atoms	
	1. Example: NaCl	2	2	
	2. CO ₂			
	3. CoCl ₂			
	4. MgCl ₂			
4.	Put each of the followarks)	wing under either	Covalent or Ionic:	
Na	aCl	KF	CO_2	
M	g_2P	SO	CaO	
	Covalent		<u>Ionic</u>	
Exam	ple: SO		NaCl	

Name:	%
5. Fill in the chart by naming the compounds. (6 marks)	
Remember to follow naming rules.	

Formula	Name
Ionic Naming	
Example: Na ₃ P	Sodium phosphate
Li ₃ N	
MgF_2	
NaCl	
Molecular Naming	
Example: CO ₂	Carbon dioxide
NO_2	
PCl ₄	
P_2O_3	

1206Attendance.xlsx